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1 Find

(i) ã (x3 + 8x − 5) dx, [3]

(ii) ã 12
√

x dx. [3]

2

O
B

A

7 cm

140°

The diagram shows a sector OAB of a circle, centre O and radius 7 cm. The angle AOB is 140◦.

(i) Express 140◦ in radians, giving your answer in an exact form as simply as possible. [2]

(ii) Find the perimeter of the segment shaded in the diagram, giving your answer correct to

3 significant figures. [4]

3 A sequence of terms u
1
, u

2
, u

3
, … is defined by

u
n
= 24 − 2

3
n.

(i) Write down the exact values of u
1
, u

2
and u

3
. [2]

(ii) Find the value of k such that u
k
= 0. [2]

(iii) Find
20

∑
n=1

u
n
. [3]
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4

O
x

y

The diagram shows the curve y = x4 + 3 and the line y = 19 which intersect at (−2, 19) and (2, 19).
Use integration to find the exact area of the shaded region enclosed by the curve and the line. [7]

5

50 mA
B

T

70°
107°

Some walkers see a tower, T , in the distance and want to know how far away it is. They take a bearing

from a point A and then walk for 50 m in a straight line before taking another bearing from a point B.

They find that angle TAB is 70◦ and angle TBA is 107◦ (see diagram).

(i) Find the distance of the tower from A. [2]

(ii) They continue walking in the same direction for another 100 m to a point C, so that AC is 150 m.

What is the distance of the tower from C? [3]

(iii) Find the shortest distance of the walkers from the tower as they walk from A to C. [2]

6 A geometric progression has first term 20 and common ratio 0.9.

(i) Find the sum to infinity. [2]

(ii) Find the sum of the first 30 terms. [2]

(iii) Use logarithms to find the smallest value of p such that the pth term is less than 0.4. [4]
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7 In the binomial expansion of (k + ax)4 the coefficient of x2 is 24.

(i) Given that a and k are both positive, show that ak = 2. [3]

(ii) Given also that the coefficient of x in the expansion is 128, find the values of a and k. [4]

(iii) Hence find the coefficient of x3 in the expansion. [2]

8 (a) Given that log
a

x = p and log
a

y = q, express the following in terms of p and q.

(i) log
a
(xy) [1]

(ii) log
a
(a2x3

y
) [3]

(b) (i) Express log
10
(x2 − 10) − log

10
x as a single logarithm. [1]

(ii) Hence solve the equation log
10
(x2 − 10) − log

10
x = 2 log

10
3. [5]

9 (i) The polynomial f(x) is defined by

f(x) = x
3 − x

2 − 3x + 3.

Show that x = 1 is a root of the equation f(x) = 0, and hence find the other two roots. [6]

(ii) Hence solve the equation

tan
3
x − tan

2
x − 3 tan x + 3 = 0

for 0 ≤ x ≤ 2π. Give each solution for x in an exact form. [6]
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 4722 Core Mathematics 2   

1 (i) ( ) cxxxxxx +−+=−+∫ 54d58 24
4
13  M1  Attempt integration – increase in power for at least 2 terms 

           A1  Obtain at least 2 correct terms 

   A1 3 Obtain cxxx +−+ 54 24
4
1   (and no integral sign or dx)  

 (ii) cxxx +=∫ 2
3

2
1

8d12  B1  State or imply 2
1

xx =  

   M1  Obtain 2
3

kx  

   A1  3 Obtain  cx +2
3

8    (and no integral sign or dx) 
      (only penalise lack of + c, or integral sign or dx once) 

    6  

2 (i)  140o = 180140 π×  M1  Attempt to convert 140o to radians  

                  = π9
7  A1 2 Obtain π9

7 , or exact equiv 

              
   (ii) arc AB = π7 9

7×     M1  Attempt arc length using rθ  or equiv method 

                      = 17.1 A1√  Obtain 17.1, π9
49 or unsimplified equiv 

  chord AB = πsin72 18
7×  = 13.2 M1  Attempt chord using trig. or cosine or sine rules   

  hence perimeter = 30.3 cm A1 4 Obtain 30.3, or answer that rounds to this 
 

   6  

3 (i)  u1 = 231/3 B1  State  u1 = 231/3  
   u2 = 222/3 , u3 = 22 B1 2 State u2 = 222/3 and u3 = 22 
 
 (ii)  24 – 2k/3 = 0 M1  Equate uk to 0  
      k = 36               A1 2 Obtain 36 
 
 (iii) ( )3

2
3
1

2
20

20 19232 −×+×=S  M1  Attempt sum of AP with n = 20 

           = 340 A1  Correct unsimplified S20 
  A1 3 Obtain 340  
   

    7  

4 ( ) [ ]2
2

5
5
1

2

2

4 3d3
−

−

+=+∫ xxxx  M1  Attempt integration – increase of power for at least 1 term 

     A1  Obtain correct xx 35
5
1 +  

               = ( 5
32 + 6) – ( 5

32− – 6)    M1  Use limits (any two of –2, 0, 2), correct order/subtraction 

               = 5
424  A1  Obtain 5

424  
 area of rectangle = 19 x 4 B1  State or imply correct area of rectangle  
 hence shaded area = 76 – 5

424  M1  Attempt correct method for shaded area 

                       = 5
151  A1 7 Obtain 5

151  aef such as 51.2, 5
256  

OR 
 Area = 19 – (x4 + 3) M1  Attempt subtraction, either order 
   = 16 – x4 A1  Obtain 16 – x4  (not from x4 + 3 = 19) 

 ( ) [ 2

2
5

5
1

2

2

4 16d16
−

−

−=−∫ xxxx ]  M1  Attempt integration 

     A1  Obtain ( )5
5
116 xx −±  
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              = (32 - 5
32 ) – (-32 - 5

32− )    M1  Use limits – correct order / subtraction 

              = 5
151  A1  Obtain 5

151±  

     A1  Obtain 5
151  only, no wrong working 

    7  

 
5 (i) 3sin

50
107sin =TA  M1  Attempt use of correct sine rule to find TA, or equiv 

  TA = 914 m A1 2 Obtain 914, or better 
 

 (ii) 70cos1509142150914 22 ×××−+=TC  M1  Attempt use of correct cosine rule, or equiv, to find TC 

   A1√  Correct unsimplified expression for TC, following their (i) 
         = 874 m A1 3 Obtain 874, or better 
 
 (iii) dist from A = 914 x cos 70 = 313 m   M1  Attempt to locate point of closest approach 
  beyond C,  hence 874 m is shortest  dist                    A1 2 Convincing argument that the point is beyond C,  
 OR    or obtain 859, or better 
  perp dist = = 859 m   SR  B1 for 874 stated with no method shown  70sin914×
   

    7  

6 (i)  9.01
20
−∞ =S   M1  Attempt use of r

aS −∞ = 1  

          = 200 A1 2 Obtain 200    
          

 (ii)  ( )
9.01
9.0120 30

30 −
−

=S  M1  Attempt use of correct sum formula for a GP, with n = 30 

          = 192 A1 2 Obtain 192, or better 
 
 (iii) < 0.4 B1  Correct seen or implied 19.020 −× p 19.020 −× p

   0.9 p-1 < 0.02 
   ( ) < log 0.02 M1  Link to 0.4, rearrange to 0.99.0log1−p k  = c (or >, <), introduce  

   p – 1 > 9.0log
02.0log    logarithms, and drop power, or equiv correct method 

   p > 38.1 M1  Correct method for solving their (in)equation 
   hence p = 39 A1 4 State 39 (not inequality), no wrong working seen  
  

   8  

7 (i)   M1*  Obtain at least two of 6, k246 22 =ak 2, a2 
    M1dep*  Equate 6k422 =ak man to 24 
      A.G. A1 3 Show 2=ak 2=ak convincingly – no errors allowed 
  
 (ii)  4k3a = 128 B1  State or imply coeff of x is 4k3a 
   ( ) 1284 23 =kk  M1  Equate to 128 and attempt to eliminate a or k 

    A1  Obtain k = 4  162 =k
    , 4=k 2

1=a  A1 4 Obtain a = ½ 

        SR   B1 for k = ± 4, a = 2
1±  

 
 (iii) ( ) 244 3

2
1 =××  M1  Attempt 4 × , following their a and k  (allow if still in  3ak×

        terms of a, k)   
        A1 2 Obtain 2 (allow 2x3) 
 

   9  

 6
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8 (a)(i)  B1 1 State p + q  cwo qpxya +=log
  
    (ii) ( ) qpy

xa
a

−+= 32log
32

 M1  Use  correctly at least once  abab loglog =

    M1  Use bab
a logloglog −=  correctly 

    A1 3 Obtain 2 + 3p – q  
 
 (b)(i) x

x 10
10

2
log −  B1 1 State x

x 10
10

2
log −  (with or without base 10) 

 
    (ii) 9loglog 10

10
10

2
=−

x
x  B1  State or imply that  2

1010 3log3log2 =

   9102
=−

x
x  M1  Attempt correct method to remove logs 

    A1  Obtain correct 0  aef, no fractions 01092 =−− xx 1092 =−− xx
   (x – 10)(x + 1) = 0 M1  Attempt to solve three term quadratic 
   x = 10 A1 5 Obtain x = 10 only 
 

    10  

9 (i)   f(1) = 1 – 1 – 3 + 3 = 0   A.G. B1  Confirm f(1) = 0, or division with no remainder shown, or  
      matching coeffs with R = 0 
          f(x) = (x – 1)(x2 – 3) M1  Attempt complete division by (x – 1), or equiv 
    A1  Obtain x2 + k   
    A1  Obtain completely correct quotient (allow x2 + 0x – 3) 
          x2 = 3 M1  Attempt to solve x2 = 3 
   x = 3±  A1 6 Obtain x = 3±  only 
 
 (ii)   tan x = 1, 3 , 3−  B1√  State or imply tan x = 1 or tan x = at least one of their roots  
      from (i)    
   tan x = ⇒3 x = π/3 , 4π/3 M1  Attempt to solve tan x = k at least once 

   tan x = ⇒− 3 x = 2π/3 , 5π/3 A1  Obtain at least 2 of  π/3 , 2π/3,  4π/3 , 5π/3(allow degs/decimals) 
   tan x = 1  x =  ⇒ π/4 , 5π/4 A1  Obtain all 4 of  π/3 , 2π/3,  4π/3 , 5π/3 (exact radians only) 
    B1  Obtain  π/4  (allow degs / decimals) 
    B1 6 Obtain  5π/4  (exact radians only) 
      SR answer only is B1 per root, max of B4 if degs / decimals  
  

    12  

 

 7


